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A three-dimensional and time-dependent numerical model is used to study the 
nonlinear interactions between thermal convective motions, rotation, and imposed 
flows with vertical shear. All cases have Rayleigh numbers of lo4 and Prandtl 
numbers of 1.0. Rotating cases have Taylor numbers of lo4. 

For the non-rotating cases, the effects of the shear on the convection produce 
longitudinal rolls aligned with the shear flow and a downgradient flux of momentum. 
The interaction between the convection and the shear flow decreases the shear in the 
interior of the fluid layer while adding kinetic energy to the convective motions. For 
unit Prandtl number the dimensionless flux of momentum is equal to the dimensionless 
flux of heat. 

For rotating cases with vertical rotation vectors, the shear flow favours rolls 
aligned with the shear and produces a downgradient flux of momentum. However, 
the Coriolis force turns the flow induced by the convection to produce a more 
complicated shear that changes direction with height. As in the non-rotating caaes, 
the convective motions become more energetic by extracting energy from the mean 
flow. For Richardson numbers larger than about - 1 .O, the dominant source of eddy 
kinetic energy is the shear flow rather than buoyancy. 

For rotating cases with tilted rotation vectors the results depend upon the direction 
of the shear. For weak shear, convective rolls aligned with the rotation vector are 
favoured. When the shear flow is directed to the east along the top, the rolls become 
broader and the convection weaker. For large shear in this direction, the convective 
motions are quenched by the competition between the shear flow and the tilted 
rotation vector. When the shear flow is directed to the west along the top, strong shear 
produces rolls aligned with the shear. The heat and momentum fluxes become large 
and can exceed those found in the absence of a tilted rotation vector. Countergradient 
fluxes of momentum can also be produced. 

1. Introduction 
Observations of the sun and the giant planets show vigorous thermal convection 

together with zonal flows which vary strongly with depth and latitude. We have only 
a limited understanding of the possible interactions between convection and such 
zonal flows with shear in rotating atmospheres. The few cases that have been studied 
suggest several mechanisms through which thermal convection may be important in 
driving zonal mean flows (e.g. Busse 1982, 1983; Hathaway & Somerville 1983). In 
view of the relatively undeveloped state of the subject, it seems worthwhile to 
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examine these phenomena further in highly idealized contexts before attempting 
more realistic simulations of solar or planetary atmospheres. 

A substantial amount of work on convection in shear flows has been motivated by 
observations of cloud streets in the Earth’s atmosphere (Brunt 1951 ; Kuettner 1971 ; 
LeMone 1973, 1983). Stability analysis (Kuo 1963; Deardorff 1965; Ingersoll 1966) 
and numerical simulations (Lipps 1971) indicate that flows with vertical shear 
produce longitudinal convective rolls by inhibiting the onset of convective rolls 
oriented transverse to  the flow. Laboratory experiments by Hart (1971) and 
theoretical work by Clever & Busse (1977) and Clever, Busse & Kelly (1977) have 
shown how these rolls became wavy and eventually three-dimensional as the layer 
becomes more supercritical. Of these studies only LeMone (1973,1983) has considered 
the effects due to rotation. Although she recognizes the possible importance of the 
tilted rotation vector in the tropics, her analysis of the momentum transport indicates 
that  mesoscale pressure gradients dominate. 

This paper reports the results of three-dimensional and time-dependent numerical 
simulation of thermal convection driven by heating from below, imbedded in a 
prescribed zonal flow with vertical shear and subject to  rotation about an axis tilted 
from the vertical. We emphasize that the purpose of these exploratory integrations 
is to study a set of physical processes in isolation, not to mimic the properties of a 
realistic geophysical or astrophysical situation. Thus we have adopted the traditional 
assumptions of laboratory convection. such as considering a Boussinesq fluid of 
constant viscosity and conductivity, confined in plane parallel geometry between 
isothermal, rigid, no-slip boundaries. All of these assumptions are violated in real 
stellar and planetary atmospheres, and should be relaxed in future work. 

I n  a previous paper (Hathaway & Somerville 1983, hereinafter referred to  as 
Paper 1) we found an unexpected richness in the behaviour of convection in the 
presence of a tilted rotation vector. When the rotation vector is tilted from the 
vertical, the convection tends to become organized into a series of rolls whose axes 
are oriented north-south, i.e. parallel to the rotation axis. The Coriolis force acting 
on these convective motions drives a downward flux of eastward momentum. We 
found that this downward flux produces a mean flow which is directed to the east 
in the lower half of the layer and to the west in the upper half. In  the absence of 
rotation a shear flow such as this would favour rolls whose axes are oriented east-west, 
i.e. parallel to the mean flow (e.g. Kuo 1963; Ingersoll 1966; Lipps 1971). In  fact, 
a series of east-west rolls would produce an even stronger shear because such rolls 
cannot produce pressure gradients to  balance the Coriolis force. Nevertheless, the 
constraint due to rotation prevails and produces north-south rolls, even though the 
positive feedback due t o  the shear would favour east-west rolls. 

I n  Paper 1 the shear flow was produced by the effects of rotation on the convection 
itself. Such shear flows might also be produced in other contexts through a variety 
of other mechanisms. For example, horizontal temperature gradients in a rotating 
fluid can produce thermal wind shears in which the thermally induced horizontal 
pressure gradients are balanced by the Coriolis force on the mean wind. I n  slowly 
rotating atmospheres pressure gradients can lead directly to shear flows. External 
stresses a t  the upper and lower boundaries of a layer are another means of generating 
a mean flow with a vertical shear. Shcar flows might also be produced by Reynolds 
stresses or Coriolis forcing on a larger scale of convective motions or a meridional 
circulation. In  the study reported here we examine the effects of a mean flow with 
vertical shear on the convective motions in a rotating layer. The shear flow is 
externally imposed by moving the rigid upper and lower boundaries in opposite 
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directions and introducing a lateral force which opposes the Coriolis force on the shear. 
In this manner we can impose arbitrary shears to investigate the interactions with 
the convective motions. 

2. Themodel 
We have chosen a highly idealized system for study and have modelled it using 

the full nonlinear Boussinesq equations. Our representation of the influence of 
rotation is quite general, in that we have retained all of the Coriolis terms rather than 
making a priori assumptions concerning their relative magnitudes. The layer of fluid 
is positioned tangentially to a rotating sphere at a latitude 4. We neglect the effects 
of curvature but include both the vertical and horizontal components of the rotation 
vector to simulate convection at  various latitudes. We use rigid (non-slip) top and 
bottom boundaries and periodic side boundaries to represent an infinite plane parallel 
layer. 

The numerical procedure used is an efficient finite-difference technique described 
by Somerville & Gal-Chen (1979). The computational domain is usually 1 unit in the 
z- (upward) direction by 10.0 units in the 2- (eastward) direction by 10.0 units in the 
y- (northward) direction. For some of the cases studied the convection forms smaller 
cells, and so the domain was limited to dimensions of 1.0 x 5.0 x 5.0. The calculations 
involve 57 600 grid points in an array with 25 points in z, 48 points in x and 48 points 
in y. One time step takes about 4 s on the CRAY 1 machines at the National Center 
for Atmospheric Research. 

The vertical shear is imposed by sliding the upper boundary in one direction and 
the lower boundary in the opposite direction. In the absence of rotation this procedure 
produces a Couette flow with constant vertical shear. However, in order to maintain 
a constant shear in the presence of rotation we must introduce an imposed force 
transverse to the mean flow which balances the Coriolis force. This imposed force, 
together with the vertical pressure gradient due to hydrostatics and the vertical 
component of the Coriolis force acting on the imposed flow, can then be removed from 
the equations for the convection. The pressure in this basic state is given by 

_- dpo = -(1-aT0)g+2Q C O B ~  U,,  
Po dz 

where p, is the pressure, po the density, To the temperature, U,  the imposed velocity, 
a the volumetric coefficient of expansion, g the acceleration due to gravity and SZ the 
rotation frequency. The imposed force in the basic state is given by 

Fg = 252 sin4 U,.  (2.2) 

The quantities are made dimensionless by using D,  the depth of the layer, as the unit 
of length, D 2 / v ,  the viscous time scale, as the unit of time, and AT, the imposed 
temperature difference across the layer, as the unit of temperature. The dimensionless 
equations that govern the convective motions are given by the mass continuity 
equation 

au av aw 
ax ay a Z  
-+-+- = 0, 

the three components of the momentum equation 

-+(u+ au U )-+v-+w-(u+ au au a UJ-Tat  sin+v+Tai cos4w = --+V2u, aP (2.4) 
at 0 ax ay a Z  ax 

4-2 
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av av av av aP 
at ax ay ax aY -+((u+ U,)-+v-+w-+Tai sin& = --+V%, 

aw aw aw 8p Ra 
ax ay aZ az Pr 

aw 
at -+ (U+ U,)-+v-+w--Tai cos& = --+-@+V2w: (2.6) 

and the thermal-energy equation 

ao ao ao a 1 
-+(u+U )-+v-+w-(@+T,) = - V 2 8 ,  
at 0 ax ay a Z  Pr 

4Q2D4 
V2 

where the Taylor number is Ta = - 

the Rayleigh number is 
ag AT D3 

Ra = 
KV 

(2.10) 
V 

K 
and the Prandtl number is 

The imposed shear is in the x-direction and is given by 

P r = - .  

U ,  = Re (z-i), (2.11) 

(2.12) 
DAU where R e  = - 

is the Reynolds number. Here v is the kinematic viscosity, K is the thermal diffusivity 
and AU is the imposed velocity difference across the layer. I n  addition to  these 
imposed parameters we calculate the Richardson number 

V 

(2.13) 

for each case. The Richardson number gives a measure of the ratio of the timescales 
for the shear and for buoyancy and serves as a useful measure of the relative 
importance of these two sources of energy. 

3. Diagnostic equations 
I n  analysing the results from our calculations we consider the balance equations 

for the momentum and energy in the layer. If we define a horizontally averaged 
auantitv as 

then the mean flow is given by 

U(Z) = U0(2)+U(z)  

and V(2)  = V ( z ) .  

To calculate the momentum balance we take the horizontal average of the two 
horizontal components of the momentum equation. This gives 

au a -  d2fi 
- = --uw+Tat sin# V+, 
at dz a2 

(3.4) 



and 
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afi d - d2fi 
- = - - w - T a i  sin@+-. 
at dz dz2 

We then define a normalized momentum flux vector M with components 

and 

1 d U  - M = - [--uw] 

M =‘[“-=I. Re dz 

’ Re dz 

These fluxes need not be constant with depth. For steady-state flows we find 

(3-5) 

(3-7) 

dM 
dz 

= + Tai sin #a. (3.9) and 

I n  the absence of rotation, Ta = 0, there is no divergence of these momentum fluxes 
within the layer itself and the momentum transport is characterized by a scalar 

(3.10) ‘momentum number’ M o =  M , + M , ,  

where M y  = 0 by symmetry. 
To calculate the energy balance we take volume averages of the different energy 

components. We define a volume average for the layer by 

( a )  = 5,’ 6(z) dz. (3.11) 

The mean kinetic energy is then given by 

(0 = J’ [ t ( U o + U ) 2 + ~ ] d z ,  
0 

(3.12) 

the eddy kinetic energy is given by 

(3.13) 
1 ’  (K) = [ ( u - a )  (u-G)+(v-3)  (~-3)+WW]dz 

0 

and the gravitational potential energy is given by 

Ra 
(P) = -- 1 8zdz. 

p r  0 

(3.14) 

Differentiating these quantities with respect to  time then gives 

(3.15) -- a(K) - C ( K , K ) + C ( P , K ) - F 1 ,  

-- a(K)- - c ( r , K ) + E - F 2 ,  

at 

at 
(3.16) 

and 

where 

-- a(p) - -C(P ,K) -D1 ,  
at 

C ( r , K )  =-J ’ ZZbdz-f0 dU ’ EZdzdz d V  
0 Z 

(3.17) 

(3.18) 
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represents the conversion of mean kinetic energy into eddy kinetic energy through 
the eddy momentum fluxes, and 

Ra 
Pr 

C( P, K ' )  = - <w@) (3.19) 

represents the conversion of available potential energy into eddy kinetic energy 
through the heat flux. Both forms of kinetic energy are diminished by viscous losses 
given by 

(3.20) F1= (VU. VU i- VV* UV i- VW* VW) 

and (3.21) 

Potential energy is lost by the thermal diffusion at the boundaries as given by 

(3.22) 

The term E = jol V ( z )  F,dz (3.23) 

represents a change in the mean kinetic energy due to work done against the imposed 
force F, in the basic state. As noted earlier, this force can arise from several different 
mechanisms. 

Another useful quantity for characterizing these flows is the dimensionless heat 
flux, given by the Nusselt number 

1 d B  - N U =  1---+~0, 
Pr dz 

(3.24) 

the ratio of the total heat flux to  the flux that would be carried by conduction alone. 
For a steady state the Nusselt number is independent of depth. 

I n  the following section we briefly review the earlier results for convection in 
rotating layers without imposed shears. I n  $5 we present results for convection in 
shear flows without rotation, while in $6 we include both rotation and shear flows. 

4. Effects due to rotation 
The effects on convection due to rotation about a vertical axis have been described 

by Veronis (1959), Chandrasekhar (1961), Weiss (1964), Somerville (1971) and 
Somerville & Lipps (1973). These effects were recently re-examined in Paper 1 and 
are reviewed here for reference. 

For comparison with later cases, we  ran the code for a non-rotating case with 
Ra = 10000 (about six times the critical Rayleigh number). As the flow evolves, 
adjacent cellular elements join to  form structures whose horizontal scale is considerably 
larger than the rolls of approximately square cross-section produced by linear theory. 
At this Rayleigh number the flow is strongly nonlinear, with typical dimensionless 
velocities near 17, so that the fluid traverses the layer in less than a tenth of a diffusion 
time. The Nusselt number for this case is about 2.38. 

To examine the effects due to  rotation about a vertical axis, we ran a case with 
Ra = loo00 and Ta = 10000 at 90" latitude. Here the effects due to rotation are quite 
strong. The large cells initially present from the first run quickly decay and are 
replaced by smaller ones. This result is expected from linear-stability theory, which 
yields a horizontal scale that decreases with increasing rotation rate. Dissipative 
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processes exact a heavier toll on these smaller-scale motions. The typical dimensionless 
velocities in this case are about 10, nearly half those of the non-rotating case, and 
the Nusselt number is about 1.75. An elegant physical interpretation of this result 
was given by Veronis (1959), who showed that, as the Coriolis force induces a velocity 
component parallel to the roll axes, the motion tends to conserve its wavelength 
measured in the plane containing the streamlines. As the rotation rate increases, the 
angle between this plane and the roll boundaries becomes smaller and so the width 
of the rolls decreases. 

The effects due to a tilted rotation vector, typical of low-latitude regions, have 
recently been determined from linear calculations by Hathaway, Toomre & Gilman 
(1980) and from the nonlinear simulations described in Paper 1. Keeping the rotation 
rate and thermal forcing the same as in the previous rotating case we then tilted the 
rotation vector to represent a latitude of 15". The tilt of the rotation vector 
profoundly influences the structure of the convection. The convective elements take 
on a pronounced north-south orientation. A strong correlation between vertical and 
east-west motions is produced. This correlation is attributable to the horizontal 
component of the rotation vector and can induce substantial mean flows. For this 
case typical convective velocities are about 14 and the induced mean flow is directed 
toward the west-north-west in the upper half of the layer and to the east-south- 
east in the bottom half, with an amplitude of about 4. The Nusselt number for this 
case is about 1.95. In  spite of the shear flow the convection is still dominated by the 
tilted rotation vector and forms a pattern of north-south rolls. 

5. Effects due to shear 
The effects on convection due to imposed shear flows have been described by Brunt 

(1951), Kuo (1963), DeardorfT (1965), Ingersoll (1966), and Lipps (1971). Strong 
vertical shear flows tend to organize the convection into a series of rolls aligned with 
the mean flow. Velocity correlations are produced which tend to transport momentum 
down the gradient and decrease the energy in the mean flow. Although the convection 
can extract energy from the mean flow in this manner, theory and experiment show 
that the critical Rayleigh number is unchanged by the presence of the shear flow. 
For strong thermal forcing these rolls become three-dimensional. This transition from 
two-dimensional rolls to three-dimensional cells has been studied experimentally by 
Hart (1971) and theoretically by Clever t Busse (1977) and Clever, Busse & Kelly 
(1977). 

We have run three non-rotating cases with imposed shear flows having Reynolds 
numbers of 50, 100 and 200. All three cases have Ra = IOOOO and Pr = 1.0. As the 
imposed shear increases the Richardson number increases from - 4.0 to - 1 .O to 
-0.25. Each case was run for 1500 time steps, which typically represents about one 
unit of dimensionless time and is sufficiently long to allow the flow to evolve to a 
quasi-equilibrium state. 

The final flow field for the first of these cases is shown on figure 1 (plate 1). The 
upper surface moves toward the east while the lower surface moves toward the west 
with a dimensionless velocity of 25. Colour is used to represent temperature, with 
yellow being hot and red being cold. The trajectories of 700 black markers are plotted 
to show the flow on the three visible surfaces. While there is a tendency to form 
convective rolls aligned with the shear, the convection for this case is more cellular 
in form and suggest a secondary instability of the rolls like those described by Clever 
& Busse (1977) and Clever, Busse & Kelly (1977). 
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Eastward momentum is transported downward in this case, producing a much 
weaker shear flow in the interior of the fluid. Although the Nusselt number for this 
caae, Nu = 2.34, is slightly smaller than for the corresponding non-sheared case, 
described in Paper 1,  the typical velocities are somewhat higher with r.m.s. values 
of about 19 in the dimensionless units. This is reflected in the larger horizontal 
velocities but smaller vertical velocities found in the flow field relative to the 
unsheared case. The momentum flux number Mo is 2.22, which suggests that even 
in this relatively weak shear flow the convection is fairly efficient in transporting 
momentum. The ratio of the energy-conversion rate (C(E, K') from the mean kinetic 
energy, to  the conversion rate C(P,  K')  from available potential energy is 0.10 for this 
case. This indicates that  the dominant energy source for the convective flow is 
buoyancy rather than the shear flow. 

The second case has Re = 100 or Ri = - 1 .O. The final flow field for this case is shown 
in figure 2 (plate 1 ) .  Here the convection forms broad rolls which are well aligned 
with the shear flow. The Nusselt number increases slightly over that  for the previous 
case: here Nu = 2.37. The momentum flux increases more dramatically and so 
Mo = 2.37 and typical velocities are 25. The large downward flux of eastward 
momentum is quite evident in figure 2. The particle trajectories on the southern 
surface show that downward and eastward velocities are well correlated. This 
correlation is also apparent in the flow field seen on the upper surface - eastward flows 
are found in the cool, red downdraughts while westward flows are found in the hot, 
yellow updraughts. The ratio of the conversion rate from mean kinetic energy to the 
conversion rate from available potential energy is 0.39 for this case. Thus, with 
Ri = - 1.0 the shear flow becomes an important source of energy for the convection. 

The third non-rotating case has RP = 200 or Ri = -0.25. The final flow field for 
this case is shown in figure 3 (plate 1 ) .  Although the size and orientation of the 
convective rolls remains the same as in the previous case, changes can be seen in the 
magnitude of the horizontal flows. The Nusselt number for this case increases to 
Nu = 2.44, the momentum flux number increases to  Mo = 2.44 and the typical 
velocities are 39. Here too the downward flux of eastward momentum is quite evident 
in the flow field shown in figure 3. The ratio of the energy conversion rates is 1.46 
for this case, so with Ri = -0.25 the shear flow is the dominant source of eddy kinetic 
energy. 

The mean flows for these three non-rotating cases are shown in figure 4. The solid 
lines represents the imposed flow while the dashed lines represent the mean flow in 
the presence of convection. The mean flow in the direction transverse to the imposed 
shear vanishes for these three cases, as would be expected from symmetry. The 
thickness of the shear boundary layers a t  the top and bottom of the layer is a measure 
of the momentum flux and decreases slightly as the imposed shear increases. We note 
that for this fluid, with Pr = 1.0, Mo = Nu for those cases with strong shears, 
Ri > - 1.  The proportionality of these two quantities a t  high Rayleigh numbers was 
discussed by Ingersoll ( 1966). As defined here the proportionality becomes an equality 
for Pr = 1.0. 

6. Combined effects of rotation and shear 
Very few theoretical studies have been published on convection in the presence of 

both rotation and shear. Those that have been published, including Flasar & Gierasch 
(1978) and Hathaway, Toomre & Gilman (1980), have used thermal winds in which 
a north-south temperature gradient produces a wind shear in the presence of rotation. 
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Re= 100 R e = M o  

-25 0 25 -50 0 50 -100 0 100 

FIQLTRE 4. The mean flows for the three non-rotating cases. Ra = 10OO0, Pr = 1.0 and Ta = 0. 
Height above the bottom surface is plotted vertically while the mean flows are plotted in the 
horizontal direction. The imposed shear flow for each case is represented by the solid diagonal lines. 
The resultant zonal (west to east) flows are shown aa dashed lines. For these. cases the resultant 
flows are purely zonal with the shear concentrated in the boundary layers near the top and bottom 
surfaces. 

We chose not to include a thermal wind in this study. Instead, the source of the shear 
is left unspecified to retain generality and to isolate the effects due to shear from the 
thermal effects due to north-south temperature gradients. 

We have run nine cases with rotation and shear, all with Ra = 10OO0, Pr = 1 .O and 
Ta = 1OOOO. The first three cases are for a latitude of 90" with Re = 50,100 and 200. 
The next three are for a latitude of 15" with Re = 50, 100 and 200. Since there is a 
preferred horizontal direction in the low-latitude cases, we ran another set with the 
shear flow reversed in direction, thus Re = -50, - 100 and -200. 

The final flow field for the first of these cases at 90" is shown in figure 5 (plate 2). 
The shear tends to produce rolls which are nearly aligned with the mean flow although 
there appears to be some tendency to produce kinks in the rolls. The rolls are rather 
narrow, as they are in the absence of any shear, but the Nusselt number is somewhat 
larger, Nu = 1.85, than in the corresponding case without shear described in Paper 1.  
Although the time-averaged statistics for the flow are fairly stable they do fluctuate 
considerably, as does the convection pattern itself. During the last 500 time steps 
the depth-averaged Nusselt number varies from a minimum of 1.74 to a maximum 
of 2.09. The ratio of the energy-conversion rates for this case is about 0.32, with 
buoyancy being the dominant source of energy for the eddies. The depth-averaged 
momentum-flux number for this case is 2.27, but in the presence of rotation the 
momentum flux varies with height as indicated by (3.8) and (3.9). The y-component 
of this flux is only about 5 %  of the total. We also find that for this case the mean 
kinetic-energy losses to eddy kinetic energy - C(K,  K') are nearly equal to the gain 
E due to work done by the imposed force, as defined in (3.23). 

The flow field for the second case at 90", with Re = 100, is shown in figure 6 
(plate 2). Although the eddies are aligned with the flow the convection is not as well 
organized as in the more weakly sheared case. The Nusselt number increases slightly 
to Nu = 1 .86 and the momentum flux increases to Mo = 2.32 with nearly 10 % in the 
y-component. The ratio of energy-conversion rates increases dramatically to about 
1.40, indicating that the shear dominates the eddy energetics. As in the previous case, 
the balance in the energetics of the mean flow has losses to the eddies nearly balanced 
by the gain due to the imposed force. 

The flow field for the third case at  W", with Re = 200, is shown in figure 7 (plate 2). 
Again the eddies are aligned with the shear but are more chaotic than in the two 
more weakly sheared cases. The Nusselt number for this case increases to Nu = 2.35, 
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R e =  100 Re = 200 

FIQURE 8. The mean flows for the three rotating cases at 90". Ra = 10000, Pr = 1 .O and Tu = 1OOOO. 
Except in the high-Reynolds-number case the mean zonal flow hardly changes from the imposed 
flow. The mean meridional flows, shown by the dotted lines, become very strong as the shear is 
increased. Except for the addition of these meridional flows, the format of this figure is the same 
as that of figure 4. 

while the average momentum flux becomes Mo = 5.16 with slightly more than 10 % 
in the y-component. The ratio of energy-conversion rates is 8.55, again indicating that 
the shear flow dominates the eddy energetics. 

The mean flows for these three cases a t  90" are shown in figure 8. I n  the first two 
cases the mean east-west flow, represented by the dashed line, is nearly equal to the 
imposed flow. However, all three cases also exhibit fairly strong north-south flows, 
represented by the dotted lines in the figure. For the third case the shear in the 
meridional flow exceeds that in the zonal flow. This meridional flow makes the mean 
flow direction change with depth. This may be the reason why the convection is less 
well organized in this case. 

The next set of cases are for a latitude of 15". The flow field for the first of these, 
with Re = + 50, is shown in figure 9 (plate 3). Here the eddies tend to be aligned with 
the rotation axis instead of the shear. With Nu = 1.88 the heat flux is slightly smaller 
than for the unsheared case. For the average momentum flux we find Mo = 1.50 with 
about 15% in the y-component. The ratio of energy-conversion rates is about 0.08 
so buoyancy dominates the eddy energetics. 

The flow field for the next case, with Re = + 100, is shown in figure 10 (plate 3). 
Again the eddies tend to  be aligned with the rotation axis but they are much broader 
and less energetic. Lipps (1971) also found this behaviour for non-rotating layers when 
the convection is constrained to rolls aligned transverse to the shear. Here the Nusselt 
number drops dramatically to Nu = 1.23 and the momentum flux gives Mo = 1.00. 
The ratio of the energy-conversion rates decreases to 0.003 so that buoyancy is by 
far the most dominant source of eddy kinetic energy and very little momentum is 
transported by the eddies. 

The flow field for the case with Re = + 200 is shown in figure 11 (plate 3). After 
500 time steps the convective motions are quenched! Both Nu and Mo = 1.00 and 
there is no conversion of energy from one form to another. This result is consistent 
with linear-stability theory (Hathaway, Toomre & Gilman 1980). The tilted rotation 
vector tends to stabilize rolls aligned with the shear. The shear tends to stabilize rolls 
aligned with the rotation vector. Together these effects stabilize all forms of 
convection. 

The mean flows for these three cases are shown in figure 12. For Re = +50 the 
mean zonal flow is slightly weaker than the imposed flow and the meridional flow is 
extremely weak. For Re = + 100 the mean zonal flow is essentially unchanged from 
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Re = +50 Re=+100 Re = +200 
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z 

0.0 
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FIGURE 12. The mean flow fields for the rotating cases at 15" with positive shears imposed. 
Ra = 10OO0, Pr = 1.0 and Tu = 1OOOO. The mean zonal flow is slightly changed from the imposed 
flow for Re = 50. For Re = 100 and 200 the mean zonal flow equals the imposed flow. In all three 
cases no meridional flows are produced. 

the imposed flow and again the meridional flow is extremely weak. For Re = +200 
only the imposed flow remains after the convective motions cease. 

For the next three cases the mean-flow direction is reversed. The final flow field 
for the first case, with Re = -50, is shown in figure 13 (plate 4). Here too the eddies 
are aligned with the rotation vector. The heat flux gives Nu = 1.89, essentially the 
same as with Re = +50, but the average momentum flux gives Mo = 0.50, again with 
less than 10% in the y-component. For this case the convection actually assists in 
moving the top and bottom boundaries by producing a countergradient momentum 
flux ! This is not unsuspected since we found in Paper 1 that the tilted rotation vector 
produces a mean flow in this sense. Eddy kinetic energy is converfed into mean kinetic 
energy, so C ( K ,  K') is negative. Of course, the magnitude of this conversion rate is 
still smaller than the production of eddy kinetic energy by buoyancy. 

The flow field for the next case, with Re = - 100, is shown in figure 14 (plate 4). 
Here the eddies are aligned with the shear instead of the rotation vector. The heat 
flux increases substantially, giving Nu = 2.42, and the eddy momentum flux changes 
sign to give Mo = 1.14. However, the conversion rate from mean kinetic energy is 
still only one tenth the rate due to buoyancy. 

The flow field for the final case, with Re = -200, is shown in figure 15 (plate 4). 
For this case the convection forms rolls which are well aligned with the shear flow. 
The fluxes of both heat and momentum increase substantially to give Nu = 3.05 and 
Mo = 2.57 and the ratio of energy-conversion rates increases to 1.74, indicating that 
the shear flow dominates the eddy energetics. Here, as in most other cases, the 
y-component of the momentum flux is less than about 10 % of the total. 

The mean flows for these final three cases are shown in figure 16. For Re = -50 
the mean zonal flow is enhanced and a small meridional flow is produced. For 
Re = - 100 the mean zonal flow is slightly weaker than the imposed flow and the 
meridional flow, while also weak, has reversed direction from that in the weakly 
sheared case. For Re = -200 the mean zonal flow has much less shear than the 
imposed flow and the meridional flow is substantial. 

The results of these calculations are summarized in table 1 .  In all cases we find 
that the contribution to C ( x , K ' )  from the second term in (3.18) is negligible 
and the y-component of the momentum flux is small. There is very little exchange 
of energy and momentum between the mean meridional flow and the convective 
eddies. 



102 D. H .  Hathaway and R. C. J .  Somewille 

Re = -50 Re=--100 Re = -200 

-25 0 25 -50 0 50 -100 0 100 

FIGURE 16. The mean flows for the three rotating cases at 15" with negative shears imposed. 
Ra = 10OO0, Pr = 1.0 and Ta = 10000. For Re = -50 the mean flow is stronger than the imposed 
flow and the meridional flow is directed to the north in the upper half of the layer. For Re = - 100 
the mean zonal flow is just slightly weaker than the imposed flow and the meridional flow is also 
weak but directed toward the south in the upper half of the layer. For Re = -200 the mean zonal 
flow is much weaker than the imposed flow and the meridional flow is quite strong and directed 
toward the south in the upper half of the layer. 
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7. Conclusions 
Using a three-dimensional and time-dependent numerical model we have studied 

interactions between convection, rotation and vertical shear flows. I n  the absence of 
rotation the convective motions become dominated by the shear flow when the 
Richardsonnumber (Ri) becomesgreater than about - 1.0. Both heat and momentum 
are carried down their respective gradients. The fluxes of heat and momentum, when 
normalized with respect to  their values in the absence of convection, increase as the 
shear increases and are equal to  each other in magnitude for these fluids with Pr = 1 .O. 
Away from the top and bottom boundaries the convection tends to  eliminate any 
gradients in the mean temperature and mean flow. 

I n  the presence of both rotation and shear the behaviour of the convection is much 
more complicated and more interesting, especially when the rotation vector is tilted 
from the vertical. Rotation about a vertical axis turns the induced mean flow to a 
direction nearly orthogonal to the imposed flow. In addition, the convection itself 
also tends to enhance the cross-shear flow while extracting energy and momentum 
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from the imposed flow. The change in mean flow direction with height may be 
responsible for the more complicated convection patterns seen. 

When the rotation vector is tilted from the vertical the behaviour of the convection 
depends upon the direction of the imposed shear. In Paper 1 we found that the 
horizontal component of the rotation vector tends to produce a zonal flow which is 
directed to the west in the upper half of the layer and to the east in the lower half. 
When the imposed flow is in the opposite direction (positive Reynolds numbers) the 
convective motions are less energetic and are even suppressed entirely when the shear 
is strong. When the imposed flow is in the same direction as that produced by the 
rotation the convective motions are enhanced and a countergradient flux of momentum 
can be produced. For these cases (with negative Reynolds numbers), the fluxes of 
heat and momentum can even exceed the values found in the non-rotating cases. 

This type of behaviour was suggested by the linear-stability analysis of Hathaway, 
Toomre & Gilman (1980) for convection in a thermal wind shear. The wind shear 
stabilizes the transverse rolls while the tilted rotation vector stabilizes the longitudinal 
rolls. When both effects are strong the convective motions are quenched. The curious 
effect is the enhancement of the convection when the shear flow is reversed. 
Hathaway, Toomre & Gilman suggested that the source of the instability was the 
meridional tilt of the convective rolls. If the meridional motions are tilted such that 
energy is extracted from the mean kinetic energy and buoyancy is augmented by the 
horizontal temperature field then the convection could be enhanced. Here, however, 
there is no horizontal temperature gradient and the convective motions shown in 
figures 14 and 15 do not show any substantial tilt in the meridional motions. 

The countergradient flux of momentum for the case with Re = -50 is also 
noteworthy. LeMone (1983) found a similar flux for a line of cumulonimbus observed 
during GATE. Her analysis suggests that this observed flux was due to a mesoscale 
pressure field and not the horizontal component of the rotation vector. Yet the tilted 
rotation vector quite naturally produces this countergradient flux. The Coriolis force 
turns upflows to the west and downflows to the east to give a downward flux of 
eastward momentum. LeMone (1983) notes that the Coriolis force can also turn 
eastward flows up and westward flows down to produce an upward flux of eastward 
momentum. Since the horizontal flows were stronger than the vertical flows she 
concludes that the Coriolis force is not responsible for the observed countergradient 
flux. However, for longitudinal rolls oriented east-west the Coriolis force on vertical 
flows cannot be balanced by (horizontal) pressure gradients since none can be 
produced in that direction. However, (vertical) pressure gradients can balance the 
Coriolis force on the horizontal flows. In cases studied here, and in Paper 1, the net 
result is a downward flux of eastward momentum which gives a net countergradient 
momentum flux when Re = -50. 

Further implications of this work for geophysical and astrophysical flows will 
depend upon the actual circumstances involved in producing the shear flow. If the 
shear is produced by a horizontal temperature gradient then the horizontal heat flux 
would have to be considered. For the non-rotating cases i t  would be interesting to 
study fluids with different Prandtl numbers to determine how heat and momentum 
are transported by convection. For rotating objects, such as the sun and the giant 
planets, the shear flows may substantially alter the outward flow of heat. Larger fluxes 
would be expected where the zonal velocity decreases with depth. 

The attempt to explain convective phenomena in the Earth’s atmosphere in terms 
of Rayleigh-BBnard convection has a long history (Agee 1984). For tropical con- 
vection on Earth the importance of rotation, among many uncertainties, is not yet 
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well understood. It would be premature to draw firm conclusions about the effects 
of interacting convection, rotation and shear flow for specific applications at  the 
present time, however. Before doing so, the traditional laboratory assumptions of our 
study must first be replaced by more realistic conditions for geophysical situations. 
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FIGURE 1 .  A three-dimensional perspective view of the velocity and temperature fields for the 
non-rotating case with Re= 50, Ra = 10 000, Pr= 1.0 and t = 1.3. Colour is used to represent tempera- 
ture with yellow being hot and red cold. The trajectories of several hundred black markers are 
plotted on each of the three visible surfaces by marking their previous positions. Here the convective 
eddies are oriented east to west - in the direction of the imposed shear flow. Both the top and south 
surfaces show that upward motions carry westward momentum while downward motions carry 
eastward momentum. 

FIGURE 2. A perspective view of the velocity and temperature fields for the non-rotating case with 
Re=100, Ra= 10 000, Pr=l.O, t=1.3. The convection forms a series of broad rolls aligned with the 
shear flow. The downward momentum flux is seen in the trajectories shown on the top and south 
surfaces. 

FIGURE 3. A perspective view of the velocity and temperature fields for the non-rotating case with 
Re= 200, Ra = 10 000, Pr= 1 .O, t=0.65. The convection forms a series of broad rolls aligned with the 
shear flow. The strong downward momentum flux is seen in the trajectories shown on the top and 
south surfaces. 
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FIGURE 5. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO 000,4=9o", Re=50, Ra=lOOOO, Pr=l .O and t=1.3.  The convection forms a series of 
narrow wavy rolls which are nearly aligned with the shear flow. The horizontal motions on the top 
surface are nearly parallel to the roll axes. The downward flux of eastward momentum is seen in the 
trajectories shown on the south surface. 

FIGURE 6. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO 000,4 =go", Re=100, Ra=lO 000, Pr=l.O and t=1.30. The convective rolls are somewhat 
broader but less organized than in the lower-Reynolds-number case. 

FIGURE 7. .A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO OOO,+ =go", Re=200, Ru=lO 000, Pr=l .O andt=0.65. The convection is more chaotic and 
exhibits cyclonic and anticyclonic motions on the top surface. 
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FIGURE 9. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO OOO,r$ =15", Re=+50, Ra=lO 000, Pr=l.O and t=1.3. The convection forms eddies which 
are aligned with the rotation axis instead of the shear flow. 

FIGURE 10. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO OOO,r$ =15", Re=+100, Ra=lO OOO,Pr=l.O andt=1.3. The convection forms broad eddies 
which are aligned with the rotation axis instead of the shear flow. The convection itself is spatially 
intermittent and much weaker than in the more weakly sheared case. 

FIGURE 11. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO OOO,r$ =15" and Re=+200, Ra=lO 000, Pr=l.O and t=0.22. The convective motions are 
quenched and the temperature field relaxes to a conductive profile. 
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FIGURE 13. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO OOO,+ =15", Re=-50, Ra=lO 000, Pryl.0 and t=1.3. The convection tends to be aligned 
with the rotation axis but there is some evidence for structures aligned with the shear. The trajectories 
on the south surface are tilted such that upward flows carry westward momentum. This momentum flux 
extracts energy and momentum from the eddies and enhances the imposed mean flow. 

FIGURE 14. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=l0000,~#~=15", Re=-100, Ra=lOOOO,Pr=l.O andt=1.3. The convectionformsrollswhich 
are aligned with the imposed shear flow. There is little evidence for tilted trajectories on either the 
south or the west surface. 

FIGURE 15. A perspective view of the velocity and temperature fields for the rotating case with 
Ta=lO 000, d~ =15", Re=-200, Ra=lO 000, Pr=l.O and t=0.65. The convection forms broad, 
regular rolls which are aligned with the shear flow. There is little evidence of tilted trajectories on 
either the south or west surface. However, the trajectories on the top surface show eastward motions 
in the updrafts and westward motions in the downdrafts. 
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